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Abstract. The self-dual SU(3) Yang-Mills equations in Yang’s R-gauge are expressed 
geometrically as a harmonic map of Riemannian manifolds. The study of geodesics and 
isometries in the manifold of fields provides certain new families of solutions of the 
Yang-Mills equations and a continuous group of transformations generating, from any 
family of solutions, a larger family with two additional parameters. 

1. Introduction 

Considerable progress has been made in recent years towards understanding self-dual 
Yang-Mills fields. In these studies two possible approaches have emerged. The first is 
geometrical: Ward (1977) and Atiyah and Ward (1977) succeeded in ‘coding’ the 
self-duality condition into the structure of certain algebraic vector bundles. 
Subsequently, Atiyah et a1 (1978) obtained a complete-but implicit-solution for all 
finite action self-dual Yang-Mills fields, leaving the open problem (apparently difficult) 
of finding an explicit parametrisation of the general solution. The second approach is 
analytic: Yang (1977) introduced a suitable gauge, the R -gauge, and reduced the 
self-dual SU(2) Yang-Mills equations to a system of three, relatively simple, equations 
which were found to be invariant under certain Backlund transformations (Corrigan et 
a1 1978a, b, Morris 1980, Brihaye and Nuyts 1980). Prasad (1978), Ardalan (1978) 
and Brihaye et a1 (1978) clarified the algebraic meaning of the R-gauge and they 
generalised Yang’s work to any semisimple gauge group. In particular, they have 
written explicitly the field equations for SU(3) gauge fields. 

In this paper we pursue further the second approach by using the theory of harmonic 
maps. In a sense, we geometrise the second approach as well, since a central idea in the 
theory of harmonic maps is the construction of a suitable manifold with metric, the 
‘manifold of fields’, in which we ‘code’ all the information of the field equations. The 
theory of harmonic maps was developed mainly by Eells and Samson (1964) and Eells 
and Lemaire (1978). In physics, it was used by Nutku (1974), Eris and Nutku (1975), 
Eris (1977) and Nutku and Halil (1977) in the search for solutions of the Einstein 
equation, by Misner (1978) in the consturction of various physical theories and by 
Nutku (1978) in the study of the SU(2) Yang-Mills fields. Here we describe the SU(3) 
self-dual Yang-Mills fields as a harmonic map of Riemannian manifolds. In addition, 
by the subsequent geometrical study of the manifold of fields, we obtain certain new 
families of solutions of the Yang-Mills equations as well as a continuous group of 
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transformations which generate, from uny family of solutions, an enlarged family with two 
additional parameters. We have found six independent Killing fields of the metric (8). 
The four 'obvious' Killing fields, by providing four integrals of motion for the geodesics, 
enable us to integrate the geodesic equations in the presence of the ansatz (16). The 
explicit knowledge of these geodesics of the metric (8) provided the solutions (27 ) ,  (30), 
(31) and (32) of the self-dual equations. For the other two Killing fields, we have 
exponentiated the infinitesimal isometry they generate, The obtained (finite) isometry 
provided the transformations generating solutions from solutions. 

2. The method 

First we review the notion of harmonic maps. 

mapping 
Idet (M, g,,,) and lN, g a B )  be two C" manifolds with metrics. We consider the 

f : M - + N ,  f = {fAL (1) 

where { f A }  are coordinates on N. The 'energy functional' of the mapping (1) is given by 
(Eells and Lemaire 1978) 

where D, is the derivative operator and dw is a volume element on the manifold 
(M,  g,x,). The mapping f is called harmonic if the corresponding energy functional is 
extremum, Writing the Euler-Lagrange equations for the functional (2), we conclude 
that the mapping f : M + Ar is harmonic if and only if 

g'""D,,D,fA + r&(D,, fB)(I>,,fC)g"'" = o, (3) 

where A = 1,2,  . . , , dim N, and r2c are the Christoffel symbols of (N,  gkB) .  
Mathematical physics usually leads to the study of systems of partial differential 

equations, and harmonic maps can be often used to provide a geometric description for 
these equations. Indeed, when the system of differential equations of the problem is of 
the form (3), one can choose (whenever it is possible) the manifolds (M,  g m n )  and 
(N, g a B )  and the mapping f :  M -+ N such that the harmonicity conditions for f are 
precisely the differential equations of the problem. Thus, one codes into the geometric 
structures (M, g,,,) and (N,  g a B )  the details of the equations under consideration. 
(M, g,,,,) is usually a space-time or flat Euclidean space; it will be referred to as the 
manifold of the independent variables. (NI g a B ) ,  whose local coordinates {f"} are 
precisely the unknown scalar fields of the differential system, will be referred as the 
manifold of fields, To describe a system of differential equations by a harmonic map, 
the difficult step is to find the metric g a B  on the manifold of fields. 

The study of the manifold of fields can provide a lot of information about the system. 
For instance, the knowledge of the geodesics of (N, g L B )  provides particular solutions 
of the system while an isometry (Eisenhart 1926) on (N,  g a B )  leads to a method for 
generating additional solutions from solutions of the system (3). Indeed, it is easy to see 
that if f A  = f " ( t )  is an affinely parametrised geodesic of (N,  g a B )  and cp is a harmonic 
function on (M,  g,,,,l) (i.e. a solution of gmnD,J3,,q = O ) ,  then { f A ( c p ) }  is a solution of the 
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system (3). For the proof, notice that, for f" = f A ( c p ) ,  the left-hand sides of equations 
(3) become 

where the terms in parentheses vanish because f A ( c p )  is geodesic and the last term 
vanishes becauses cp is harmonic. it can also be seen that iff" +f" = i( f") is an isometry 
on (N, g>B) then, for every solution { f"} of the system (3), { f A }  is again a solution. For 
this proof we only have to observe that the isometry cannot possibly change the 
geodesics on (N, g>B) since it does not change the metric itself. The above two 
observations, combined with the fact that many systems of equations arising in physics 
can be described via harmonic maps, make harmonic maps a very useful tool in 
mathematical physics. We mention that the source-free Einstein (Matzner and Misner 
1967) and Einstein-Maxwell equations with one or with two Killing fields, the SU(2) 
(Nutku 1978) and SU(3) self-dual Yang-Mills equations expressed in the R-gauge and 
the equations for the non-linear a-models (Garber et a1 1979) can be described in terms 
of suitable harmonic maps. 

3. The SU(3) equations 

The SU(3) self-dual Yang-Mills equations, written in the R-guage and in convenient 
notation, form the following system of eight coupled, second-order, nonlinear partial 
differential equations 

In equations (4), pl, cp2, xl ,  x2, y l ,  y 2 ,  lol  and w2 are scalar fields in four-dimensional 
Euclidean or Minkowskian space, depending on the interpretation of the corresponding 
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gauge fields. The coordinates 

have been used, where x(&) ( p  = 1 , 2 , 3 , 4 )  are Cartesian coordinates. The derivative 
operators are 

(6) 

and repeated indices imply summation. The reality of the corresponding gauge fields 
requires that cpl and q2 are real while xl, y l  and w 1  are complex conjugates of x2, y~ and 
w 2  respectively. (Equations (4) are equivalent to equations (A5)-(A12) of Prasad 
(1978); to compare, set x1 = p l ,  x 2  = PI ,  y1 = p2, y2  = p 2 ,  w1 = p3, w 2  = p3 .  The relation 
between the gauge fields and the present variables can also be found in Prac.id (1978).) 

Next we describe equations (4) as a harmonic map. First we observe that by 
assuming that y = p and z = 2, equations (4) are of the form (3), where g,,, is the flat 
metric with line element 

ds2 = g,,(dx")(dx") = (dy)2+(dz)2 (7) 

on the two-dimensional manifold M = R 2  (with coordinates ( y ,  2 ) )  and { fA}A, l ,  

stands for (p1, p2, xl ,  x2, y l ,  y 2 ,  w l ,  w2) .  We will call the system with y = y and z = 2 the 
auxiliary system. Moreover, we have found? that the Christoffel symbols of the metric 
g X B  with line element 

ds2 = g h ( d f A ) ( d f B )  

(8) 

are precisely the coefficients of the terms in the equations (4) which are quadratic in the 
gradients of the fields. We conclude, therefore, that the auxiliary system can be 
represented by the harmonic map f : M + N, where the manifolds M and N are two- and 
eight-dimensional and their metrics are given by equations (7) and (8) respectively. 

We now claim that both the applications of harmonic maps mentioned at the end of 
5 2 can be used in studies of the original system (4) from the mere knowledge of the 
description as a harmonic map of the auxiliary system. Indeed, when f" = f A ( t )  is an 
affinely parametrised geodesic of the metric (8) and 40 is a harmonic function in the 
four-dimensional Euclidean or Minkowskian space (i.e. a solution of D,D,cp = O ) , f A ( q )  
is obviously a solution of the self-dual equations (4). Moreover, any method for 
algebraically generating solutions from solutions for the auxiliary system obtained from 

f It was not an easy task to find the metric g a B ;  we had to look for solutions of a system of 36 partial 
differential equations with 36 unknowns, the coefficients of the metric. Unfortunately the computations are 
too long to be included here. In the search for the solution our policy was to seek for the simplest non-trivial 
solution. 
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an isometry of the manifold (N,  g L B )  is also a method for generating solutions of the 
original system (4). In $ 3  4 and 5 these two ideas are applied in the study of the self-dual 
equations (4). 

4. Geodesics of g L B  solutions 

In this section we demonstrate the integration of the geodesic equations of the metric 
gLB with the ansatz (16). 

It is immediate to write the geodesic equations of gLB.  Indeed, since the metric g L B  
was found as the metric whose Christoffel symbols are precisely the coefficients of the 
quadratic in the gradients terms of the equations (4), to write the geodesic equations one 
simply has to consider the eight unknowns in (4) as functions of one variable (the affine 
parameter t )  and interpret the gradients as first derivatives and the Laplacians as second 
derivatives. The knowledge of the metric gLB,  however, provides additional informa- 
tion: since gLB admits the four 'obvious' Killing fields 

there are four integrals of motion of the geodesic equations. They are 

( p i p 2 ) - ' ( ~ 1 i i  -41) = b i ,  ( p i ( ~ z ) - ~ ( y z i 2  - 4 2 )  = bz, 

where the dot denotes differentiation with respect to the affine parameter f. Using these 
integrals, we can eliminate il, i2, 41 and c j 2  from the equations. The other four 
equations become 

(In i1p1pi2)'+ b z 1 w p 2 ( i J 1  = 0 ,  

(In i 2 9 1 p 2 ~ ) ' +  bz2plp2( i2) - l  = 0 ,  

(In p 2 ) " f  b - l p 1 ( ~ 2 ~ i ~ i 2 +  bp1pz = 0 ,  

z1 = a2 - b y 1 ,  2 2  = a1 - 6 1 ~ 2 ,  

(11) 

(12) 

(13) 

(14) 

2 -1 (In PI)" + p 1 ~ 2  z lzz + = 0 ,  

where we have set 

(15) 

and b = b1b2. 

step. 
We concentrate on the equations (1 1)-( 14), whose integration is the only non-trivial 

First, we look for solutions of equations (11)-(14) by making the ansatz 

p1/(p2 = eUf+'. (16) 

i i i 2  = b ~ 1 ~ 2 ( ~ 1 ( ~ 2 .  (17) 

By subtracting equations (13) and (14) we obtain that 

Then, by substituting p1p2 in the second terms of equations (11) and (12), we observe 
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that these equations can be integrated once. They give 

i i z 2 ( ~ 1  kip:,  (18)  

z i i 2 ~ 1 =  k2~022, (19)  
where k l  and k 2  are two new constants. 

obtain 
Now by multiplying equations (18)  and (19)  and using equations (16)  and (17), we 

(20)  -1 1/2 t 1 ~ 2 = ( k i k 2 b  ) exp[-&at+p)], 

while by dividing equations (18) and (19)  we obtain 

z :2 = eC&, (21)  
with c another constant. Equations (20)  and (21)  determine z1 and t2 (except when 
k2 = - -k i ) :  

Then it is straightforward to determine cp1 and cp2  by using equations (16)  and (17). We 
obtain 

where E = *l. The expressions (22)-(25) satisfy the equations (13)  and (14)  provided 
that the constants are subject to 

(26)  
Finally, by using equations (10) one easily obtains xl, x2, w1 and w2.  By setting now 
x = exp[$(at + p ) ] ,  redefining the parameters and restricting them to satisfy the reality 
condition, we obtain the following family of solutions to system (4): 

2 ( k l +  k2) + 3 ~ a b  = 0.  

cpl = - jmmm)2'3(~q*bb6)-1'3X, ( F 2  L- -("* qq *) 1 / 3 (bb * ) --2/3x - 1, 

-1 in* 
.XI =mq x , x2 = (mq-')*xm, 

y 1 =  b?(a - q y m - ' ) ,  
y 2  ~ (b* ) . - l (n*  - q * x - t x ) ,  (27)  

w1 = amq-lb-'X'nM, 

where D,Da (In x) = 0 ,  a ,  6 ,  q, m are complex constants with m + m* = 3 and the 
asterisk denotes complex conjugation. 

Next we examine the case k 2  = - k l  = k (say) for which equation (21) implies that 
2 1 2 2  = e which, compared with equation (20) ,  gives that cy = 0 and exp(2ck + 3 p )  = 
- k 2 b ~  I .  In this case, in addition, we have i p 1 / q 2  =eo.  Then it is easy to see that 
equations (17), (18) and (19) reduce to 

(28)  

w 2  = (amq--'b -l)*,y'n, 

C /  k 

(In 21)' = -kq2 exp(-p -ck- ' ) ,  
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while equations (13) and (14) reduce to 

(In cp)"+ kp-'cp -p2cp2 = 0, (29) 

where b = - p 2  and cp = cp1 exp(-P/2) = cp2 exp(P/2). Equation (29) admits the solu- 
tions 

cp = 2v2 e-"'[(e-"' + kp-1)2-p2v2]-1 

and 

cp = -pv2[k +(k2i.p4v2)1'2 sin ut]-',  

where v is a constant. (We have ignored the second constant of integration, which can 
be introduced by the change vt  4 vt  + E .  Also, we have ignored the inclusion of a 
singular solution of equation (29) which does not lead to any additional solution of the 
system (4).) Then it is easy to complete the solution for the geodesics. From these we 
obtain, with the substitutions e-'' + kp- '4  x and tan ( v t / 2 )  4 x, respectively, and 
redefinitions of various parameters, the following two families of solutions of the system 
(4): 

2v2(x - kk*) 2vc3k* 2vc3k 
xz=- 401 x1= ---. -z = cp2cz  = 

c x2+p27- '  x + ipv x- ipv '  

* k* - kk* - ipv + ipv -,kk*) 
x + ipv x -1PV 

9 w1= v(b*)-'(2a 

2ak - kk* + ipv kk" + ipv 
x - ipv 

w2 = vb 

where v, c and p are real and k, a,  b are complex constants with bb*=p2 and 
DUDa ln(X - kk*) = 0, and 

cpl 
C 4a2p2(x+u) (x+a- ' ) '  

kk*(a2 - 1)'(x2 + 1) _-  2 - p2c2 = 

3 2  x1 = -ik*c3(a2-- l)(ap)- '(x+a)- ' ,  x 2  = -ikc (a  - l)(ap)-'(X +a-')- ' ,  

w 1 =  + 
4apb * 

0 2  = + 
4apb 

where D,D,(tan-' x)  = 0, p ,  c are real and a, U ,  b, k are complex constants subject to 

Finally, for bl = b2 = 0 (equation (10)) we were able to integrate the geodesic 
equations only for cpl = cp2  = cp. This case leads to (In 40)" + ala2cp = 0 which, when 

a a * = l a n d b b * = p .  2 
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integrated, provides the last two families of solutions: 

V I =  q 2 =  u2(2aa*)-'(1 -x2),  X I =  u(a*) - l x ,  x2 = ua-lx, 

y 1 =  v(c*)-'x + p * ,  y 2  = vc-lx + p ,  
w1 = u2(2a*c*)-'(X2- l)+p*u(a*)-'x, 

w2 = u2(2ac)-1(X2 - 1) + pua -Ix, 

(32) 

where DUD, [ln(x - l) /(x + l)] = 0, u is a real and a, p, c are complex constants subject 
to aa* = cc*, and the family obtained from equations (32) by the formal substitution 
U + -iu, x + ix, where now ,y satisfies DUB, (tan-' x)  = 0. 

In writing the solutions (27), (30), (31) and (32) we have systematically ignored the 
inclusion of additional constants to xl, x2, 01 and w2 as well as the constants which could 
have been introduced by considering the general solution of the scalars which satisfy 
Laplace's equation. The solutions (27), (30), (31) and (32) are missing among the 
explicitly known solutions we are aware of. 

5. Isometries of g k B  transformations 

In this section we use two Killing fields 5" and 5" of the metric (8), in addition to the four 
'obvious' Killing fields, and obtain a method for generating, from any solution of the 
system (4), a new solution with two additional free parameters. The four 'obvious' 
Killing fields which, by providing the integrals ( lo ) ,  helped in the integration of the 
geodesic equations lead only to trivial transformations, namely, the transformations 
describing the addition of constants to the four fields x i  and wi. 

In the coordinate system {pi, x i ,  yi, wi, i = 1, 2 )  the contravariant components for 
these two Killing fields are 

We consider the isometry infinitesimally described by the linear combination a + 
where the ai's are two arbitrary constants. The crucial step, of course, is the 

exponentiation of this infinitesimal isometry to a finite one, i.e. a step which requires the 
integration of the system of the ordinary differential equations 

dl = 0 ,  $ 2  = -cp2(a ly l  + a z y 2 ) ,  

In this section the dot denotes differentiation with respect to a parameter t along the 
isometry. Only the integration of the subsystem of the second, fifth and sixth of the 
equations (34) is non-trivial and it is performed as follows. We first observe that the 
equations admit the integral ( ~ ~ ( a ~ y ~ - a ~ y ~ ) - ~  = b, for some constant b. Next, by 
multiplying the last two equations by a l  and a2 respectively, adding them, eliminating 
( p 2  and expressing the y I ' s  in terms of the new variable z via a~y l -a2y2=z- '  and 
a l y l  + a 2 y 2  = iY1, we obtain the equation 222 -i2 = 4k - 1, where k is the constant 



Harmonic maps and self-dual SU(3) gauge fields 1453 

k = cylcy2b2rp; 

be integrated 
t = 0 values of 

(35) 

; this equation admits the integral ( i2  + 4k - 1) z-' = constant and it can 
easily. Finally, by expressing the integration constants in terms of the 
the fields and considering the t = 1 image point of the isometry, we obtain 

the transformation generating from solutions other solutions with the two additional 
parameters cy1 and c y 2 :  

1 

41 = P1, 

21 = x1 + ( Y l W I ,  

4 2  = R - l P 2 ,  

22 = x 2  + cyzw2, 

Y 1 =  ~ - 1 ~ Y l + ~ 2 ~ Y I Y 2 + P ~ r p ; 1 ~ 1 ,  

Yz = m y 2  + al(Y l Y 2  + P:P? 11, 
w1 = w1, G?, = w2, 

R = 1 +alyl + c y 2 Y 2  + c y l ~ Z ( Y l Y Z +  P 2 P 1  ). 

where 
2 -1 

It is straightforward to verify that equations (35) generate a two-dimensional group of 
transformations. These transformations preserve the combination ( c y l y l  - c y 2 y 2 ) ( p i I .  

For any choice of complex conjugate constants a l  and c y 2  the transformations also 
preserve the reality of the corresponding Yang-Mills fields. 

We could combine the transformations (35) with the addition of constants to the x,'s 
and w,'s. To obtain some feeling about the resulting transformations, we study the Lie 
algebra structure of the corresponding Killing fields: {t", la, x?, xi, U?, w ; }  from a Lie 
algebra, {t", la, xy, x i }  is a commutative subalgebra (in fact, an ideal), while {t", I", U?, 

m i }  is not commutative and it is not a subalgebra. Successive applications, therefore, of 
the transformations (35) and the additions of constants to w,'s could in fact provide the 
entire six-parameter group of transformations which we expect to construct from the 
knowledge of the six independent Killing fields. 

6. Discussion 

The information about a system of differential equations is coded in the metric g k B  of 
the manifold of fields in the same way as it can be coded in a Lagrangian in the more 
conventional approaches of theoretical physics. In fact there exists a close relationship 
(R Geroch 1980, private communication) between the metric gkB and the Lagrangian 
L which describe the same system of differential equations: Let f : M + N be a C" 
mapping of manifolds with metrics g a b  and g k B  respectively. Consider the pull back 
(Abraham and Marsden 1978) ( f * g k B ) a b  of g k B ,  which is a tensor field on M,  and take 
its trace L = ,gab( f.&hB)ab. The Euler-Lagrange equations on the scalar L are precisely 
the harmonicity conditions (3) on the mapping f (R Geroch 1980, private com- 
munication). When { x " }  and I f A }  are local coordinate systems in M and N respectively, 
we can obtain for the Lagrangian the expression 

L = g ""g kB ( a f A /  a x  a ) ( a f B /  ax 1. (36) 
Because g a b  is usually known, all the essential information about the metric g k B  is 
contained in the Lagrangian L, and vice versa. In fact, had we known it, it would have 
been possible to obtain the metric g k B  from the Lagrangian for the self-dual Yang- 
Mills equations obtained by Brihaye et a1 (1978). However, there is an advantage in 
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thinking in terms of harmonic maps, i.e. the metric g a B  on the manifold of fields, instead 
of Lagrangians-the scalar (36) on the manifold of the independent variables. By 
discarding the terms gab, afA/axa and dfB/dxb from the scalar (36), we focus our 
attention on the metric g a B  which involves the only essential information. In addition, 
having isolated the geometrical object (N,  g a l s ) ,  we can ask certain geometrical 
questions (for instance, about geodesics, Killing fields, finite isometries) which provide a 
great deal of information about the original system of differential equations. 

The families of solutions obtained in 8 4 can be characterised by the fact that they 
are functionally dependent; more generally, any solution obtained by using harmonic 
maps and the geodesics on the manifold of fields is functionally dependent. It should be 
clear, therefore, that the families (27), (30), (31) and (32) present only a small portion of 
the solutions admitted by the system (4). In fact, having made the ansatz (16) for the 
integration of the geodesic equations. we have not even obtained all the functionally 
dependent solutions. 

In the present search for solutions of the system (4), all our considerations were 
local; it seems a formidable task to try to incorporate in the search for the geodesics on 
the manifold of fields the requirements for the correct asymptotic behaviour and for the 
absence of singularities in the resulting Yang-Mills fields. By looking, however, in the 
explicit expressions of the obtained solutions, we can see a necessary condition for the 
action of the corresponding Yang-Mills fields to be finit?: the four scalar fields 
mentioned immediately after equations ( 2 3 ,  (30) ,  (31) and (32) which satisfy the 
Laplace equation should behave asymptotically like 0(F1). Therefore, from our 
experience with the Laplace equation we expect that these solutions will be singular 
exactly at the origin r = 0. 
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